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ABSTRACT

We recognize a number of uncertainties and inconsistencies in the
classical theory of meteors. However, the general characteristics of the
theory are verified by a sizable class of objects of moderate brightness

and we therefore accept it as a first approximation.

We believe the bulk density of the meteoroid to be the least well-
determined parameter entering the theory and one of the most important.
If we could demonstrate convincingly that densities for some class of objects
are similar to the density of meteoritic stone, we could accept the composi-
tion and structure as (probably) known and reduce the uncertainties in the
physical theory of meteors. On the other hand, low-density material is
predicted by comet models, and proof of its existence is of substantial
importance. We thus think it unjustified to assume a high density for
meteoritic material. A straightforward interpretation of meteor data has,
in the past, suggested that low density prevailed. The same result is now

seen in the fireball data.

We have attempted to alter the classical theory, following other authors
in part, in order to explain observations of faint and bright meteors in terms
of a high density. None of the explanations offered by previous authors can
be successfully extrapolated to the very bright fireballs. Frothing of the
meteoroid as suggested by Allen and Baldwin becomes less important as the
body size increases and less possible as the object penetrates deeper into
the atmosphere. Fragmentation by thermal shock as proposed by Jones and
Kaiser becomes decreasingly important as the body size increases, as can
be demonstrated both by a mathematical model and by the existence of

meteorites of less than the critical size.



We have also treated three additional variations in the theory. These
are fragmentation of small particles, gross fragmentation, and a reverse-
rocket effect produced by high-velocity spall. We find all of these to be

either inefficient or unrealistic models for disguising the true bulk density.

We conclude either that almost all objects are low density or that the
meteor theory or the constants employed contain a gross error. We consider

this latter possibility to be slight.

The small terminal masses of most fireballs lend support to our conten-
tion that they are unlike meteorites. The near absence of any large masses
over a 5-year period in the Prairie Network casts serious doubt on our
predicted rate of fall of meteorites. We have noted that three quite different
physical effects — thermal shock, ablation, and pressure fragmentation — may
produce substantial variations between the mass-number flux of meteorites
outside the atmosphere and on the ground, and we believe that it is impossible
at present to make a sensible extrapolation from the observed distribution to

that in space.

vi



RESUME

Nous identifions un certain nombre d'incertitudes et d'incon-
- ’ . . »
sistances dans la theorie classique des metdores. Cependant, les
, . . ¢ ’ ¢ . ’ ’ . . 2’
caracteristiques generales de la theorie etant verifiées par une
. . 3 ’
classe assez importante d'objets de brillance modéree, nous l'ac-

g 3 -
ceptons donc comme une premiere approximation.

Nous pensons gque la densité de masse de la méteorite est le
paramétre, relatif a la théorie, le moins bien déterming et un
des plus importants. Si nous pouvions démontrer d'une fagon con=-
vaincante que les densités pour certaines classes d'objets sont
semblables a la densité de la pierre météoritique, nous pourrions
admettre la composition et la structure comme connues (probable-
ment) et réduire les incertitudes dans la theorie physique des
metdores. D'un autre cH6té, les modeles de cometes prédisent une
matiere & faible densité, et la preuve de son existence est d'une
considérable impor tance. Nous pensons donc gqu'il n'est pas jus-
tifi€ de présumer que la matiére metéoritique ait une forte den-
site. Une interprétation directe des données des météores, dans
le passé, a suggéreé qu'une faible densite prévalait. Le meme
résultat est observé maintenant dans les données des globes de

feu.

Adoptant partiellement les idées d'autres auteurs, nous avons
essayé de changer la théorie classique pour expliquer les obser-
vations de météores faibles et de météores brillants en tant
qu'objets & forte densité. Aucune des explications offertes par
les auteurs précédents ne peut Btre extrapolée avec succeés aux
globes de feu tres brillants. La formation d'écume sur la me-
téorite, suggérée par Allen et Baldwin, devient moins importante
quand la taille de l'objet augmente et moins probable quand
l'objet péneétre plus profondément dans l'atmosphére. La fragmen-
tation par choc thermique, comme celle proposée par Jones et
Kaiser, décroit en importance quand la taille de l'objet augmente,
comme on peut le démontrer par un modeéle mathématique et aussi

par l'existence de météorites plus petites que la taille critique.
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Nous avons aussi trait€ trois variations supplémentaires dans
la théorie. Ce sont la fragmentation de petites particules, la
fragmentation grossiere, et un effet de rétrofusée produit par
un eclat de grande vitesse. Nous trouvons gue toutes ces varia-
tions sont des modeéles soit inefficaces soit irréalistiques pour

. . . . »
dissimuler la vraie densite de masse.

Nous concluons gue presque tous les objets sont de faible
. ’ . -, . ,
densite ou bien que la theorie des meéteores, ou les constantes
s .
employees, contiennent une erreur flagrante, Nous pensons gque

cette derniere possibilité est tres petite.

Le fait que les masses finales de la plupart des globes de
feu soient petites, a apporté un support a notre affirmation que
ces globes sont différents des méteorites. L'absence presque
totale de grandes masses pendant 5 ans dans le Prairie Network
fait planer un doute sérieux sur le flux des tombées de mEteo-
rites que nous avons predit. Nous avons noté que trois effets
physiques tout a fait différents - choc thermique, ablation et
fragmentation par pression - peuvent produire d'importantes va-
riations entre les flux du nombre et de la masse des metéorites
en dehors de l'atmosphere et sur le sol, et nous pensons qu'il
est impossible actuellement d'extrapoler raisonnablement 1la

distribution observée pour obtenir celle dans l'espace.
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KOHCITEKT

Mel ocosHaeM uUCIIO HeONpeIelieHHOCTEN U HeIlOoCNeHLOBATENLHOCTEHR,
KOTOpHE COOeDPXaTCs B KIACCUUECKO# Teopuu meTeoporB. OmHako,
ofmre XapaKTEepPUCTUKY TeOopuU: NOLTBEPKIANTCS BHAUNTENbHEM KJIACCOM
O0BEKTOB YMEPEHHON APKOCTU 7 I03TOMY MH IPUHUMAEM €€ 38 IepBoe

npubauXxeHue .

Ms cuumTaeM, UTO OCHOBHA{ IIJIOTHOCTL METEODPHOTO Tela HABIAETCH
HaluMeHee OIPeNeNeHHHM TapaMeTpoM B TeOPMUM M OODHUM 13 Hambolee
BAXHBX,., HCcaIu O MH CMOTJN YyOEOUTEJHHO IIPONEMOHCTPUPOBATHL CXOI-—
CTBO MEXIYy TIJIOTHOCTBHIO HEKOTOPOTO Kjacca O0BEeKTOB U IJIOTHOCTBI
METEeOPUTHOTO KaMHA, MH CMOTJIU OH NPUHATH COCTA&B U CTDPYKTYPY 34
(BeposTHO) W3BECTHHE ¥ yMEHLUUTL HeONpeNeljleHHOCTH B PU3MUECKON
Teopuu MeTeopoB. C OPYyroil CTOPOHH, MATEPUANl C HU3KOW IIJIOTHOCTHLD
IPEeNCKAa3HBAETCHA KOMETHHMU MOLENAMM, & LOKa3aTellbCTBO €T0 CyMecT-—
BOBAHUA ABAAETCH BONPOCOM HCKIINUNUTENHBHONW BakxHOCTU. TakuMm o6pasoMm,
MB CUWUTaEeM HEOIPAaBIAHHHM OONYCKATE BLHCOKYW IIJIOTHOCTbL y METEODPUT-—
HHX MaTepuaJyioB. IllpAMaa uHTepilpeTalus MeTeOPHHX IaHHHX B IIPOLIJIOM
yKaswBajla Ha npeolblanaHue HUBKOM MIOTHOCTH. Te Xe pPe3ynbTaTH

HaONWISITCTS U B IAHHHX OOJIUIOB

M meITANKMCH MBMEHUTH KJIACCHUECKYW TeOpUW, UaCTUUHO CIEenys
IPyTUM aBTOpaMm, uTOOH OOBACHUTEL HAONNIeHUS CIabhX U APKUX MEeTeo-—
POB C TOUKYV 3peHUA BHCOKOW HnoTHOCTM. Hu OOHO M3 OOCBACHEHLH,
NIPEenlIOXeHHHNX NPeNHIyNUMU aBTOpamMu, He MOXeT OHTBL BJKCTPAalolIUpOBa—=
HO K CJIyuaw OuUeHb APKUX CONMIOB. BCIeHUBAHUE MeTeODPOB, KakK
npeanoxeHo AnneHom u BonpymHOM, CTaQHOBUTCH MeHee BaXHHM C yBeln-
YeHUEeM pas3Mepa Tena U MeHee BO3MOXHHM C 6ojiee TIyOOKUM IIPOHUKHO-
BeHueM O6bLeKTa B aTMochepy. TparMeHTaluUd TerJIOBHM yIapoM, Kak
- mpennoxeHo IxoHconomM u Kalisepom, CTAHOBUTCS MeHee BaXHOR ¢
yBeNuueHUEeM pasmepa Terxa, UTO MOXeT OHTH NPOIEMOHCTPUPOBAHC KakK
MATEMATAUECKUMY MOIENAMK TaK U CYLeCTBOBAHNEM METEODUTOB PaA3MeEpoM

MEeHpIle KPUTUUECKOTO.

Mpr Taxkke paccMaTpUBaANU TPY OONONHUTENbHHE BApPUALNUN B TEOPUU,
Takue Kax: PparMeHTaluUd MaJHNX UYacTuUll, MaccoBas (QparMeHTanud u

PeaKTuBHHZ 3PPHEeKT, NPOUIBONVMHI OCKOJKOM, IBAT2KMVUMCH C BHCOKOM

ix



CKOpOCTBm. Mz HaXODVMM BCe 3TU MONENW WJIM HeIOCTATOUHHMW WIU

HEPEeaJIbHHMU OJA OOBACHEHUS NeficTBUTEeNbHOW MaCCOBOR MIOTHOCTH.

Mp memaem BHBOL: WJIM ITOUTH BCe OODBEKTH UMEWT HUSKY
IIJIOTHOCTL WIIW 2JIEeKTPpOHHadA TeopuA U BXOIOANMEe B Hee€ IIOCTOAHHLE

rny6oko omwmOouHs. M cumTaeM IOCHENHIK BO3MOXHOCTL MAaJIO BEePOSTHOM.

HeGonpure TepMUMHaNbHNE MacCCH OONBNUHCTBA CONUIOOB TMOIIEPXK—
BAaKWT Halle NOJIOXeHVWEe O TOM, UTO OHUM HEe IOXOXW Ha MEeTeOopUTH. lloutu
MOJIHOE OTCYCTBUE JKWOHX OONBINUX MACC 3a S5-JIeTHU# nepuon paboTH
cern llpapwm ocrTaBideT Cepbe3HHe COMHEHUS IO NOBOLY IPENCKa3aHHOTO
XOo@ma BHIALEHU?X MeTeopuTOB. Mi 3aMeTwiIum, UTO TPYW HOBOJLHO PABIU~-
yHHe QusanuecKkue 3PPEeKTH-TEIJIOBON ymap, abnauusg u fparMeHTauus 3a
CueT MABIEHWA-MOTYT NDUBECTH K BHAUMTEIbHHM WUBMEHEHHSM B MACC—
yuciie IOTOKa MEeTeOpPUTOB BHe aTMocdeps W Ha 3eMie; MH yYBEDeHH,
UTO B HaCTOdAllee BPeMA HEBO3MOXHO IPOBECTU PABYMHYK 3KCTPAIIONALIUD

OT 0003pPeBaeMOTI0 paclpelelleHNsa K paclpelelieHun B aTmocepe.



FIREBALLS AND THE PHYSICAL THEORY OF METEORS

Richard E. McCrosky and Zdenék Ceplecha

1. INTRODUCTION

Information available from meteor photographs, together with present
knowledge of the physics of meteor phenomena, is insufficient to determine
uniquely the physical parameters that describe a meteoroid. The range of
solutions consistent with the data heretofore available extends from low-
density meteoroids whose structure has minimal integrity (Jacchia, 1955;
Jacchia et al., 1967) to meteoroids whose structure may be similar to that
of some chondritic meteorites (Allen and Baldwin, 1967; Jones and Kaiser,
1966). The success of all these models rests on the introduction of some
new variables in the classical equations. These variables — progressive
fragmentation, frothing, or thermal shock — are not in themselves limited
by any known parameters of the meteoroid and thus provide sufficient
leeway to explain almost any of the observed phenomena among fainter
meteors. The basic difference in approach of the above authors can be
expressed in terms of the bulk density of the meteoroid material.

Jacchia et al. (1967) consider this to be a free parameter to be determined

by the observations, while the ’others accept, a priori, a density and structure
of meteoritic stone. A resolution of this problem thus contains an answer

to the question of whether or not there exists in the solar system material

of grossly different structure than that represented in our meteorite col-
lections. A cometary source for many meteors is indisputable. The generally
accepted model of a comet (Whipple, 1951) predicts low-density meteoroids.

A cometary origin has also been suggested for meteorites (Opik, 1966),

although perhaps the asteroids remain a more popular source.

This work was supported in part by grant NGR 09-015-004 from the National
Aeronautics and Space Administration.



The purpose of this paper is to investigate the new observational material
of very bright meteors provided by the Prairie Network and to derive additional
constraints on the meteor theory or on the structure of the meteoroid.

Although we cannot resolve the question of the origin of meteorites with the
new information, we can increase our confidence in the low-density inter-

pretation of a significant part of the faint-meteor data.

In Section 2 we review the classical single-body theory and point out its
" major uncertainties and inconsistencies. In Section 3 we investigate varia-
tions on the claséical theory when a meteoroid ablates by fragmentation.

We will consider six models of fragmentation, including reviews of three
models proposed by others to explain the anomalous deceleration observed
in faint meteors. Our primary concern here is to demonstrate that all
previous suggestions are applicable to small bodies only and that they can-
not be important for the much larger objects now under observation by the
Prairie Network. We will also outline, and discard, a new suggestion to

explain the apparent low densities of meteors of any size.

In Section 4 certain Harvard-Smithsonian data on photometric and
dynamic masses of meteoroids are presented and compared. The various

interpretations of these results are summarized.

An independent analysis,\ in Section 5, of the terminal (dynamic) masses
of Prairie Network fireballs is used to strengthen the suggestion that these
objects have little structural integrity. We conclude with a discussion of
the disruptive forces in the atmosphere that influence the number distribution

of meteorite masses.



2. THE SINGLE-BODY THEORY

The deceleration and mass-loss equations governing the meteor's

trajectory are conventionally written in the form (see list of symbols)

2
(1) V:-%P_Y__ ,
d
3
. _ ARpvV
(2) md_" ZC

Equation (2) is derived from the conceptually pleasing but unproved assumption
that mass loss is proportional to the energy flux to the body. We will defend
the adequacy of the relation later. In any case, equation (2) is valid only

after a preheating period when the temperature of the surface is raised to a
value that permits ablation. At any time, a correct expression for the energy

flux available for the heating or for the ablation is given by

3 4
(3) Ldi?E=ﬁ_2&_V_ -ffaRe{[T(S)] —Té} as

where the integral is to be taken over the surface S, and o is the Stefan-
Boltzmann constant. The neglect of the radiation term in the usual mass-loss
equation properly reflects its unimportance for any conceivable material

(T < 3000°K) when the term is compared with the probable energy flux

(A >0.01) on the meteoroid during most of its luminous trajectory.



A complete expression for the deceleration equation can be written as

. > )
4 - =
(4) de+FHpV mdgcosZR+fde 0

The gravity term is negligible except during the earliest portion of the
trajectory. It will be ignored throughout this paper. The last term is a
formal expression for the momentum transferred to the body by the ablated
material, where w is the velocity of the ablation products with respect to

the meteor, and -1 =f =1 is a parameter describing the anisotropy of the
ablation. The extreme values of f are in force when all material leaves with
the velocity vector opposite to or in the same direction as the meteor velocity
vector. For isotropic ablation, f= 0. The positive values of f (the ""reverse-
rocket" effect) have been found to be small or, at most, comparable with the

first term in the drag equation (Levin, 1961).

With sufficient knowledge of the meteoroid and the meteoric process,
either equation (1) or (2), together with the usual observations, could be
used to determine the mass of the meteoroid. Since we do not have this
knowledge, some additional observational data are required. Meteor spectra
demonstrate that essentially all the luminosity is produced by meteoric atoms,
and this suggests that the meteor intensity I is proportional to the rate of mass

loss by vaporization:

(5) I < m

The vaporization mass loss r'nv is not necessarily equivalent to the mass-loss
term in equation (2), which may include loss of molten or solid material as
well as vapor. The single-body theory assumes that r’nV = r'nd, and we will
impose that condition now and in Section 3.4 treat one case where

r'nV # r'nd. The relationship (5), based on observations of relatively bright
meteors (- 10 <M < -2), has evolved to an explicit luminosity-mass law

of the form



(6) 1=

If the observations give intensity and velocity as a function of time, a

photometric mass (indicated by the subscript p) can be determined from

t

_ 2 I(t)
(7) m (t)——-J- —_—t dt
> Tod ven?
end

The limit te is generally taken to be the end of the luminous trajectory.

In writing ecifation {7) we have tacitly assumed that the entire meteoroid mass
is vaporized. Since some terminal mass (unvaporized remnants) is to be
expected, the photometric mass is a lower limit to the true mass. Though
commonly used, this luminosity equation is at best a rough approximatidn.
The form of the equation is simple not because it represents a simple process
but rather because the available observations made of an extremely complex
process are sufficient to define it in only general terms. Certainly the body
size, the air density, and the meteoroid composition play a role in deter-

mining the luminosity, and it is inconceivable that the effect of velocity can

really be described by a simple exponent. But since the present unknowns,

0’
a more complex formulation can be justified only if new types of observations

n and the luminous efficiency T,; cannot yet be specified with great precision,

or more information on the physical process becomes available.

The preceding defense of the simple approach to the luminosity problem
requires a rebuttal. The initial statement, relating the intensity to the

meteor mass, is known to be incomplete in three respects:

(A) The spectral observations that form the observational basis for
equation (5) are of very much brighter meteors than many of the photo-

graphic objects analyzed by means of equation (6). Although it may be true



that these fainter meteors behave in the same fashion, there is as yet no

observational evidence to verify this.

(B) Meteor spectra at times show gross changes in the level of radiative
excitation over the meteor trajectory. It is unlikely that the supposed constant
To does not also vary along the trajectory. An additional term, possibly
dependent on the air density, might be justified.

(C) Meteor flares represent an abrupt quantitative change in the total
meteor luminosity. They often also display a qualitative change in the radi-
ating species. The luminous efficiency of a flare where Ca II is predominant
is probably appreciably higher than in the region preceding the flare. Perhaps
‘then the intensity is sometimes dependent on more than the first power of

r'nv in equation (6).

In the following pages, we make the specific assumptions that the preceding
inconsistencies and doubts can be ignored in any 'first-order' theory and that
the photometric mass, as defined, is a good representation of the actual
meteoroid mass. In justifying this approach we note that there are many
meteors of intermediate brightness (small-camera meteors, M = -5) for
w-hich the observed intensity and velocity over the entire trajectory can be

d
The fit is obtained by making the appropriate choice of only two parameters

well represented by the classical theory if it is assumed that mp =m ..

that remain constant over the trajectory and that maintain reasonably similar
values from meteor to meteor. These parameters, o and K, are derived

from equations (1), (2), and (7) and a definition of the frontal area as

2/3 -2/3
m P

m ’

(8) A=A

where A is the shape factor. Expressed in terms of the observable quantities,

"The velocity exponent n of equation (6) is of minor importance for any given
meteor since the change in velocity along the trajectory is usually small.



(9) 0—=2‘/l}(,: n+1l - ’n
v vfx/v dt
and
1/3
V(fllvn dt>
-1/3 1/3 -2/3
(10) K =2 /rATO o = >
pV

where for convenience we have now dropped the subscripts on m. The differ-

ential equations representing the meteor's motion are then

1/3
(11) V:K(—?—) pv2 m'l/3
0

and

m=ocmVV,
so that

(12) m, =m, e

The integrated form of equation (12) can be used to predict a terminal mass

m, that remains after the initial mass m., has decelerated to a velocity VZ’

1
where ablation ceases.

The success of the classical theory for even a limited number of objects
recommends it as a point of departure for other problems. The quantity K
has played a significant role in the physical theory of meteors. Independent

determinations of the luminous efficiency To (Fe) of iron particles of known



mass (McCrosky and Soberman, 1963; Friichtenicht et al., 1968; Ayers,
1965), together with an assumption on the iron abundances of meteoroids,

now permit us to regard T, as relatively well known. The shape factor

A and the density Py, 2T€ r(l)ow the least-known parameters of K. The
observed values of K, interpreted under the classical single-body theory,
are consistent with low-density spheres or very highly flattened bodies

of meteoritic density. While it is true that this result has depended on an
assumption of the composition of the meteoroid, some confirmation of the
reasonableness of this assumption is provided by a few unusual meteors of
abnormally low values of K (Cook et al., 1963; Verniani, 1966). In these
cases, if a shape factor corresponding to a spherical meteoritic stone

(pm = 3.5 g/cmz) is assumed, the luminous efficiency derived from the
observations is in good agreement with the values deduced from the

various iron-particle experiments.

Had the history of meteor physics proceeded along the lines we have
described, it would seem that single-body theory and low-density meteoroids
would have become de rigueur. In fact, the analysis of faint meteors
(Jacchia, 1955) obtained with the Baker Super-Schmidt meteor cameras in
the 1950s (before the question of the luminous efficiency was fully resolved)
showed that outlandish departures from single-body theory were common in
these objects. Two distinct approaches can be recognized in the ensuing
attempts to reconstruct an adequate theory. One group, primarily the
Harvard-Smithsonian contingent, proposed only to adjust the theory for
small bodies and to accept as correct the apparent single-body behavior of
the small-camera meteors. Another group, comprised of almost everyone
else in the field, viewed the Super-Schmidt results as a possible symptom of
a fatal error in the entire theory and consequently undertook the far more
difficult task of rewriting the meteor theory in terms of new physical concepts.
It has been a general practice in these attempts to introduce the simplifying
assumption that meteoroids are similar in structure to meteorites. The need
for some such assumption is understandable since the models depend on the
bulk behavior of the material. Some authors state explicitly (and others

seem to imply) that their models have additional merit because an explanation



is made on the basis of a meteoritic structure. We consider this conclusion
unwarranted. The question of the existence of another kind of meteoroid
structure is too important to resolve by hypothesis. If meteoroids are in
fact low-density material, their physical characteristics either cannot

or need not be similar to those of meteorites., If either is the case, the

high-density model is erroneous and must fail.

It appears that no group has sufficiently compelling arguments to convert
its opponent. The stumbling block is invariably in the extrapolation of the
faint-meteor explanations to the larger bodies observed by-small cameras.

In the following two sections, we will attempt to extrapolate these new models
to the case of extremely large bodies and to demonstrate their failure by

observations made on bright fireballs.






3. VARIATIONS IN THE SINGLE-BODY THEORY AND THEIR
EFFECTS ON LARGE AND SMALL BODIES

3.1 Progressive Fragmentation

The nature of the so-called faint-meteor anomaly is adequately described
elsewhere (Jacchia, 1955). In brief, it was found that the dynamic mass
decreased far more rapidly than the photometric mass as the meteor pro-
gressed along its trajectory, giving the appearance of a decreasing meteoroid

"mathematical, "

density with increasing time. Changes in the basic theory of a
rather than a physical, nature cannot explain the anomaly. Any method that
treats the entire body of data as a statistical sample rather than investigates
the effects observed in an individual meteor may be subject to this objection
because meteors of identical mass and velocity may produce greatly different
anomalies. An adequate theory, therefore, must permit an uncertainty or
variability in the physical process that produces the anomaly. Ananthakrishnan
(1960, 1961) proposed that the anomaly be removed by assuming that the lumi-
nous efficiency depends on the atmospheric density. In this way, the ''average"
meteor can be made to obey the new theory, but most meteors will remain
anorhalous. Furthermore, bright meteors that previously followed the

classical theory will, when analyzed under the revised theory, now show a

strong anomaly of the opposite sense.

Jacchia's original suggestion of a progressive fragmentation of the
meteoroid into an ever-increasing number of fragments explains well the
deceleration anomaly. His results included a measure of the degree of
progressive fragmentation in the index X . Visible forms of fragmentation,
such as terminal blending, are strongly correlated with x. Jacchia proposed
that the crumbling is primarily a surface phenomenon whereby small fragments,
perhaps nearly commensurate with the fundamental '"building-block' size in a
porous structure, are detached. If the same kind of fragmentation occurs in
large and small bodies, the effect on deceleration will be increasingly apparent

as body size decreases. Large bodies will approach the classical behavior.
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We are not aware of any serious discrepancies between this explanation
and observations. Allen and Baldwin (1967) have questioned Jacchia's
interpretation because of the occurrence of meteors with x <0, "unfragmenting"
meteors. As observers we are perhaps less distressed by these cases than
are other investigators. We note, though, that x < 0 is the expected result of
either a body that ablates to a more streamlined form or of a porous body
that collapses during the melting process. Other causes of negative X,
appropriate for fireballs, are discussed in Section 4. On the other hand, we
can foresee some difficulties with Jacchia's model if the surface of the
meteoroid has time to increase its strength because of melting and subse-

quent freezing of molten material in the interstices.

3.2 Frothing and Sloughing

Allen and Baldwin's (1967) proposal that a deceptively low-density object
is produced from a high-density source by forming a shell of solidified froth
is particularly appealing since they have demonstrated the possibility by
direct experiment. This model not only explains the apparent low density
but also, if froth fragments from the body, predicts terminal blending, flaring,
and all the other aspects of meteors usually attributed to fragmentation of a
fragile body. The faint-meteor anomaly is produced by a steady increase in
the froth. Increased vaporization and sloughing of froth in larger bodies are

proposed to eliminate the anomaly in small-camera meteors.

Allen and Baldwin indicate that they encountered some difficulty in main-
taining the integrity of the froth in their well-controlled laboratory experi-
ments. Their inability to approach the dynamic or thermal loads met by a
natural meteor still remains a major question in determining the applicability
of their process to the meteor phenomena. In an example quoted in a second
paper, Baldwin and Allen (1968) extrapolate from a test made on a 30-g sample
with heating rates comparable to a 15-km/sec meteor at an altitude of 98 km
to what might be expected of a 1-g meteoroid of the same velocity at an altitude
of 86 km. They conclude that frothing sufficient to produce a significant de-

crease in the apparent density will then occur after 3.6 sec of heating. Of
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course, l-g meteors do not have this long a lifetime. The average 15-km/sec
meteor first becomes luminous at about 80 km or, for most zenith angles of
the radiant, less than 1 sec after passing the 86-km level. It would appear
that, if frothing is to be significant, most of the process must occur after

the onset of luminosity and in a region where the dynamic load — and the
thermal load — on the froth will be nearly 2 orders higher than those
characteristic of the laboratory experiment. For many Prairie Network
fireballs (height about 40 km), the aerodynamic loads are 2 more orders
higher. These bodies may have ablated to a size where the frothing process
may again play some role, but the environment must be extremely hostile to

the frothing phenomenon.

Froth on meteorites is very rare. The exception is the Sputnik 4 steel
fragment, which contains about 10 to 15% of its mass in porous iron droplets
(Marvin, 1963). However, the low velocity and the tangential entry provided
the long heating period and the low aerodynamic pressure that are conducive to

accumulating frothing.

3.3 Fragmentation by Thermal Shock

Jones and Kaiser (1966) have suggested that thermal stresses in stony
objects can, for sufficiently large bodies, produce major fracturing before
other forms of ablation become appreciable. If this is the case, Jacchia's
concept of progressive fragmentation in a weak structure is unnecessary.

To invoke these thermal forces, the authors demonstrate that a strong
thermal gradient will exist in meteors of radius R R 0.1 cm. Assuming

that the heating of the body proceeds as though the meteoroid were plunged

into a hot bath, they show that the thermal stresses at the center of a spherical
meteoroid will exceed the tensile strength and therefore, they presume, the
body will fragment. However, their approach omits from consideration
several factors of importance for bodies of R >> 0.1 cm. For example, the
proposed heating mode ignores ablation and has associated with it a time
constant that may be very large compared with the duration of a meteor event.

The maximum stresses for stones of 10-cm radius are reached only after the
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object has been immersed in the bath for nearly a half hour! We show in the
following sections that, in the regime of large R, thermal fracture should

not be expected and, therefore, that fragmentation of this nature is also
size-dependent and cannot be important for many Prairie Network objects

if they are homogeneous stones. We will consider the thermal-shock problem
first during the preheating period and then during the ablation period. Later
in Section 3 we will investigate ablation by the spallation associated with

thermal shock.

3.3.1 Thermal stresses during the preheating period of a meteoroid

We assume a spherical meteoroid of radius R composed of a homo-
geneous material. The thermal stresses in the solid material can be com-
puted according to the formulas of Timoshenko and Goodier (1951, p. 418,
formulas (252)):

R r
2 2
(13) P = l‘f% (—13)1 Tr dr-—lé-f Tr dr)
R™% 9
R r
(14)  m=2E (%j T 2 dr,+—1§J T dr—T>
- v
R 0 r 0

The positive values of P and Il correspond to tension, and the negative values,
to compression. If the temperature T is given as a known function of r, the
integrals can be evaluated and the stresses computed. Here P is the stress
along the radial direction and Il the stress in any direction perpendicular to

the radius vector of the spherical meteoroid.
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The problem of heating a meteoroid with R 2 1 cm during the first

nonablation part of the trajectory can be solved if radiation cooling is ne-
glected. This solution can be used for direct computation of P and I. Only
the starting equations and the solution are given here. The temperature of

a meteoroid during the preheating period is given by the following set of

equations:
(15) T, =T -T, .
5 P 0
or

8T Ap V>
(17) )\<8r )r=R= 8 ’
(18) T (~o00, r)=0 ,
(19) T(t, 0) = finite value

The actual velocity V in equation (17) can be substituted directly by Voo s

the no-atmosphere velocity, because the change of velocity of such large
bodies during the preheating period is negligible. Equation (17) contains
a numerical factor 8, which represents the extreme assumption of omni-

directional heat flow to the surface of the meteoroid.

The solution of equations (15) through (19), derived by Ceplecha and
Padevet (1961), is

R T {(R) eWr - e-Wr

(20) = :
- TWR _-WR r ’
(S - €
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where

(b cos ZR Voo)l/2
(21) W = ,
B
and
-WR
e2) = AR (WR el te 1)
AVOSR e - e

If we substitute equation (20) into equations (13) and (14), the resulting

stresses are

- 2a ET(R) F(WR) - F(Wr)

(23) Plr) T - v G(WR) g

_E T(R) 2 RF(WR) + r F(WR) - RG(Wr)
(24) M(r) = =77 RG (WR) :

where the functions F and G are defined as

(26) G(x) =

For a meteoroid with given velocity and material constants, W is given by
equation (21). Equation (22) then yields the air density p at which the
surface temperature T(R) is reached. If equation (21) for W is substituted
in equations (23) and (24), we can compute the thermal stresses P and IT at

any place in the meteoroid.
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We now search for extreme values of stresses. Inspecting equation (23)
we see that during the whole preheating period of a meteoroid P is always
positive inside the body (r < R) and zero at r = R. It is also evident that the
function 12 (r) decreases as r increases, and thus the maximal radial tension
is always at the center of the meteoroid. If the body is sufficiently large, the
tension is practically the same in the greater part of the interior and the drop

to zero tension takes place in a thin surface shell.

On the other hand, if we inspect equation (24), the tangential stress Il can
be both positive and negative inside the body. On the surface of the meteoroid,
II(R) is always negative; i. e., tangential compression on the surface is always
present. It is evident that the function 1 (r) decreases as r increases; thus
the maximum tangential compression is always on the surface and maximum
tangential tension is at the center of the meteoroid. It is also evident that
for sufficiently large bodies, II(0) = P(0).

Thus the extreme stresses of a meteoroid during the preheating period

can be computed by substituting the limits on r in equations (23) and (24):

(27)

-2/3
Maximum tension = P(0) = 2a E7(R) E(WR)-2/

1 -y G (WR)

(28)

Maximum compression = I(R) = -

2 E T7(R) G(WR) - 3F(WR)
1 -wv ' G (WR)

If we substitute into equations (27) and (28) the values of the tensile and
the compressive strengths (St’ SC) of the meteoroid material, we can obtain
the surface temperature at which the stress is relieved by surface or internal
fracture ('rC = critical temperature). At this point, some sort of fragmentation
may be expected. When the surface of the meteoroid material reaches the
compressive strength, the heating that follows will result in surface fracture,

which may be accompanied by some spalling of small chips from the surface.
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Surface cracks alone, without spallation, could also relieve the induced
compressive forces. When the material reaches the tensile strength at its
center, the heating that follows would cause an internal fracture, which
could either immediately break the body into several pieces, or break it
later when the cracks reach the surface by any sort of surface ablation, or
weaken the body sufficiently for aerodynamic forces to complete the
fracturing process.

Equations (27) and (28) were evaluated with P(0) = St and I(R) =S ,
with stony and iron compositions of meteoroids of different radius R, with
different velocities V (15, 30, and 60 km/sec), and with a choice of A
(1, 0.1, 0.01) and cos ZR (I, 0.1, 0.01). Some of the basic results
are presented in Figs. la and 1b, Where the resulting critical temperature

' T is plotted against log R. The critical air density at which the material

strength is reached is plotted against log R in Figs. 2a and 2b.

The numerical values, in cgs units, of the other parameters used are

v =0.25, b=1.6><1o'6, T0=280°K ,

Stone:)\=3><105, pm=3.5, c=107 ,

a=5x10"° E =5><1o“,st=5><107,sc=2><1o9 ;
6 6
Iron: X=3X10", p_ =7.6, c=7x 10 ,
m
_5
a=1.5x 10 ,E=1.7><1012,St=8><109,SC=1.5><1010
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Results. We can define a certain limiting radius R of the spherical

meteoroid for which the compressive stress at the su.rfal.lclz1 and the tensile
stress at the center are both equai to the coﬁrresponding strength of the
material. For all R > Rlirn’ the strength of the material is always reached
at the surface, which means that no internal fracture is possible. For all
R < Rlim’ the strength of the material is always reached at the center of the
body.

The critical temperature T, can be defined as the temperature at which
the material strength of the meteoroid is reached. For a stony meteoroid

and R > R > T is almost constant (TC = 600° C with the numerical param-

lim

eters used). For a stony meteoroid and R < Ryt Te decreases rapidly with

im
decreasing R. This could be partially compensated for by radiation cooling,

which had not been taken into account when the formulas were derived.

The critical temperature is dependent on only three material constants,
a, E, and v, for sufficiently large bodies (R 2 5 cm). The limiting radius

Riim
The limiting radius is independent of A.

depends on all material constants and, in addition, on Voo and cos ZR.

For stone,

log Riyim = 3.78 - 0.5 log Vo -~ 0.5 log cos ZR

The critical air density Pe at which the critical temperature Te is

reached depends on material constants and on Voo , N, cos Z and b:

R’

N
8 ANDb cos ZR }
2.5 c
A[3V°°

(29)

o
I

C
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For stone,

log p_ 7.29 - 2.5 log Voo- log A + 0.5 log cos Z

R >

and for iron,

I

log p_ 7.75 - 2.5 log Vo - log A + 0.5 log cos Z

R

For all iron meteoroids considered here (R 21 cm), the tensile strength
cannot be exceeded inside the body; internal fracture is impossible. The
critical temperature T for iron meteoroids with R > 10 cm is almost constant
('rC = 440° C with the numerical parameters used). The critical temperature
Te for an iron meteoroid increases as the radius decreases below 10 cm.

For l-cm radius, T, £ 720°C for Voo= 15 kmm/sec and Te = 560°C for
Vo = 60 km/sec.

3.3.2 Stresses during ablation period

If R > 1 c¢cm, equations (23) and (24) reduce to

Using T(R) = 1800° C, the temperature of the solid surface (i.e.,
T(R) = 1500°C),and W = 20/cm, we find for the limiting radius at which

internal fracturing may be expected,

(31) Rlim< 10 cm

While unequal heating of a nonrotating body or excessive stresses caused by
heating an irregular body may increase this limit, this simple calculation

suggests that thermal fracturing is restricted to bodies of size between two
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limits, the lower limit being that determined for the isothermal case by

Jones and Kaiser (1966).

When internal fracturing occurs, some strains are relieved and the
nature of the problem changes. It is not obvious to us that the fracture

planes will necessarily extend to the surfaces. Internal fracturing may not

result in fragmentation. One might as well expect a shattered interior held

together by an intact shell. This kind of model has been verified by a multi-
tude of children who have engaged in the 'fried marble' fad — glass marbles
are subjected to sudden high temperatures that produce a decorative interior

craze while the marble remains intact and smooth.

This result, of course, cannot be generalized to include material as
inhomogeneous as chondrites, but we believe it is indicative of the process
that may occur during the heating of meteorites. Meteorites that have their
surfaces completely covered with a fusion crust are, of course, quite common.

Some of these are very much smaller than R =~ 10 cm. We suggest that

lim
such bodies do exist because the stresses were released by internal fracture.

3.4 Ablation by Fragmentation of Small Particles

If we wish to accept the meteor theory in detail, some revisions to the
equations are necessary when fragmentation or droplet spraying is a signifi-
cant method of ablation from the parent body. While the precise nature of
the fragmentation process is not of vital concern to us, we can conceive of
three possible mechanisms: hot material may be sprayed off as droplets;
warm solid chips may be created by spallation; and cold or warm solid frag-
ments may be detached by a pressure fragmentation. These three mecha-
nisms represent cases where n’ld # n"lv.

In the last instance, the mass-loss equation (2) should be rewritten with
a dependence on V2 instead of V3, thus introducing a second variation in the
theory. Anticipating the result of this section — that small-particle ablation
does not significantly affect the interpretation under the single-body theory —

we now need only demonstrate that the velocity dependence in equation (2)
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either is unimportant or, at least, is not detectable in the observations. A
set of equations comparable with those of the single-body theory is readily
derived for mass loss by fragmentation. A new mass-loss parameter o
similar to o but of different physical units, is found to be an observable

quantity. Meteors generally show little change in velocity along the trajec-

tory and therefore o, will show the same constancy as 0. The velocity depen-

dence of these quantities among meteors of different velocities will, of
course, differ and can, for example, lead to different predictions of the
terminal masses of bodies of different velocities when equation (12) is used.
It seems unlikely to us that cold fragmentation can occur throughout the
trajectory, and although either form of mass-loss equation can be made

to satisfy the observations of small-camera meteors, we believe the usual

energy dependence given in equation (2) is more realistic,

As an example for detailed investigation of ablation by fragmentation,
we consider a warm chip spalled by thermal shock. We will assume that
all the energy of interaction of the meteoroid with the air is spent in spalla-
tion, and hence (1) the surface temperature will be constant during the ablation
and equal to the critical temperature T. defined by equation (28); (2) the
fragment is unshielded by the parent body; and (3)the fragment is sufficiently
small so that further mass loss can occur only by vaporization-—i. e., either
tensile strength or surface tension precludes further fragmentation. We
further suppose the following idealized history of the small chip after its

release.

Initially, the fragment is heated through until it becomes a liquid at the
vaporization temperature, during which time it is decelerated. The droplet
is maintained at this temperature by radiation and ablation cooling. Mass loss
and luminosity occur until the energy flux is balanced by radiation. Under
these conditions, the terminal mass of the fragment is controlled by a small
mass-loss parameter A/2T'{, since { is necessarily the vaporization energy
and A, the effective heat-transfer coefficient, is less than the actual heat-
transfer coefficient because of radiative cooling. Thus, we can expect the

terminal mass, not accounted for in the photometric mass, to be larger than
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that determined by the application of equation (12) where the applicable

value of { may be a fragmentation energy or the heat of fusion.

Furthermore, all the luminous energy will be produced by a fragment
with a velocity less than that of the parent body. In the application of the
luminosity equation (6), the body velocity and not the fragment velocity has
generally been used. Thus, the photometric mass of the fragment will also
be underestimated. To obtain some estimates of the errors in the photo-
metric mass m_ resulting from the various effects, we will compare our
result with an extreme form of ablation — direct vaporization from the |
surface of a meteoroid. A proper treatment of the problem would allow
for differences in the heat-transfer coefficient A between a vaporizing body —-
with the attendant shielding — and a spalling body, and for differences in A
between the large parent body and the small fragments. We ignore these
effects and use A = 1 throughout. In so doing, we greatly exaggerate the
spall rate and therefore have an upper limit to the discrepancy we would

expect,

Ablation by spallation can be represented by the following differential

equations:
2 2
dR _ B W™ R -
(32) T - WR o1 ,drn-41'rme drR ,
(33) 4P = p Vcos Z
dt R ~°
2
(34) dv 3p V
dt 4R p ’
ApV° |1
(35) W= BAT_ TR

For initial values (t= 0 at T = TC), we take R = the initial radius, p , and Vc'
c
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These equations were solved numerically for stony meteoroids of different
R and V- The mass loss corresponding to the decrease of R by dR during
one integration step dt is assumed to be spalled in fragments of equal dimen-~
sions. The influence of nonregular distribution of the spalling velocity is
neglected here. It is examined in the next section. The number of all frag-

ments in one integration interval dt is computed from

3d
(36) N=-——— ,

4w Rf Pm

where the subscript f refers to a fragment or chip. We use Rf = 0.0l cm for
Voo = 15 km/sec, 0.007 cm for 30 km/sec, and 0. 005 cm for 60 km/sec,

assuming that any larger chips would be fragmented by thermal stresses.

The initial temperature of each chip is assumed to be Tc’ and it is then
heated to the boiling temperature. The heating is assumed to be isothermal

for such small chips:

ch de g De.V

(37) 3 =t + O'R (Tf + T

o TT%—

The velocity of the chip in this nonablation part of the chip trajectory is

computed from

3(p,-p_.)
f cc
(38) V.=V __exp [- )
f cc 4Rf pmbcos ZR

where Vcc and Poc 2Tes respectively, the velocity and air density at the point

where the chip left the main body.
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After this initial heating, the conventional single-body theory is used
with { = 8 X 1010 ergs/g to compute the evaporation, velocity, position in
trajectory, and light intensity of each fragment. The radiation cooling is
considered in the mass-loss equation. Multiplying the light intensity by the
corresponding number of chips, we have the total light intensity i of the

"cluster' of chips spalled during one integration interval dt:

(39) iz N—— V

Comparison of theoretical light curves of the same object ablating by
100% spallation and by 100% vaporization for different masses and velocities

shows that

(A) The discrepancy between the photometric masses decreases as the
velocity increases. It is negligible for meteor velocities in excess of

30 km/sec.

(B) The discrepancy decreases as the meteor mass increases and is

less than 10% for meteors of R = 30 cm for all velocities considered.

(C) For the extreme cases studied (r = 3 cm, V = 12 km/sec), the

photometric mass of the spallation case underestimates the true mass by

33%. As a result, the density would be overestimated by about 18%, an

entirely trivial correction.

3.5 Gross Fragmentation and an Interpretation of Some Super-Schmidt Meteor
Data

If the restriction that the meteoroid is a single body is removed, a
simple model of the meteoritic process that follows the spirit of the classical
theory can be derived to explain the observed low density even though the
actual bulk density of the object is high. Let us consider a meteoroid that has
fragmented into N separate objects, each of mass m and frontal area H.

The observed drag will be that of one of the objects; whereas the
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photometric mass will equal the sum of the individual fragments. The new

condition we impose is specified by

(40) mp = N my
and then

(41) K = Nl /3 K .,
(42) ol = %"77 ,

where the primed quantities are those derived from the observations if the

unprimed ones are the true values for each fragment.

This model is not restricted to cases of exact division of the parent body
into N components. The various fragments may be somewhat different in
size and not undergo appreciable differential deceleration. The relationships
of equations (41) and (42) will still be valid although the parameter N will be

less than the number of particles.

Before this model is accepted, ‘we require that (1) a mechanism for
producing the fragmentation exists and (2) some observations lend themselves
to an interpretation by the model. We accept, for the moment, the Jones and
Kaiser (1966) suggestion that thermal shock provides the mechanism and
proceed to inspect certain JVB (Jacchia et al., 1967) Super-Schmidt meteor
data.

The cases chosen are all those with a small progressive fragmentation
index (X = 0.1) and for which at least four deceleration solutions are tabulated.
There are 66 such meteors. The condition on ¥ limits the cases to those
meteors that generally conform to the classical theory. Meteors with a

large number of decelerations are usually those longer and better observed
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objects for which corrections to the "'shutter flutter'' are well determined.

We use the weighted average

(43) ATogp =_Z_Mg£

Zp

where the required quantities are given in Table 1.2 of JVB. For To = 10-19

(cgs and Oth mag) and for T'A = 1. 21 (appropriate for a sphere in free

molecular flow), we can show that
(44) 10gK=A10gp—5.83=—-§—logpm—6.35.

The values are plotted against log Voo in Fig. 3.
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Fig. 3. JVB meteors with fragmentation index X < 0.1 separated into groups
A and C according to Ceplecha's (1968) beginning-height criterion.
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At first sight the observations suggest little more than a random
scattering of the data. However, there is some indication that most of the
meteors belong to two distinct groups. Other analyses of meteors from which
this sample was chosen have also suggested that discrete differences in
structure or density are to be found among these meteors. Jacchia (1963)
divided the Super-Schmidt meteors into two groups according to their
aphelion distance @’ . Those with @' > 7 a. u. have statistically greater
beginning heights than those with ¢ < 7 a.u. Using the same division of the
data, Verniani (1965) demonstrated that the average value of K for these two
groups shows a significant difference. We find, in our more limited sample,
that 32% of the meteors with log K > -6, 0 have @’ > 7 a.u., while none of the
meteors with log K < -6. 0 has such a large aphelion distance. We can argue,
then, that Fig. 3 1is correctly interpreted as a composite of two groups and
that aphelion distance is a useful, but not the complete, parameter required

to separate them.

In an independent analysis, Ceplecha (1968) was able to separate the
Super-Schmidt meteors solely on the basis of beginning height and demonstrate
that selection effects in the JVB meteors artificially enhanced the importance
of aphelion distance as a distinguishing characteristic of the two groups. We
have used Ceplecha's criterion to separate the data into his groups A and C
as shown in Fig. 3, (The stray point at log K = -6.7 from Harvard meteor
7946 is the only '"asteroidal' fragment uncovered by JVB. As such, it can
be considered the unique member of a third group.) We believe this division
into two groups has at least the same significance as the earlier analyses.
Before we proceed with an interpretation of these meteors’, it will be of value

to discuss some observational errors.

We inspected the variations of log K and the associated values of log o

given by JVB for various deceleration solutions of individual meteors in

group C. There is some tendency for points to scatter around a line
(45) log K _
log o :
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a result to be expected if the most serious observational errors are in the
deceleration. An error of about 20% in V is necessary to account for the
scatter of log K around the mean value of group C. Jacchia has suggested

that the internal probable errors of V are of the order of 5%.

Other possible errors and an estimate of the mean deviations they may
produce in log K are 0.15 for actual differences in the meteoroid's shape
or density, 0.05 for errors in the integrated intensity, and 0. 05 for devia-
tions of the actual atmosphere from the standard atmosphere employed in
the analysis. Altogether it does not appear unreasonable to accept the
scatter in the C group as observational in origin and take the mean value
of log K= -5.77 (pm = 0.1 g/cm3) to represent the data. The average

of the A group is log K= -6.19 ( = 0.6 g/cm3). If the scatter is to be

p
interpreted as resulting primaril;nfrom gross fragmentation and if the lower
values of log K (-5.9 for group C) result from a single body, then the largest
value is explained by a meteoroid fragmenting into about 10 equal masses or,
alternatively, a still larger number of unequal but comparable masses. A

division into five fragments for group A would suffice. These numbers are

in the realm of possibility.

However, if we accept this interpretation, we must also accept the values
of density implied by the extreme (single-body) value of K. As an alternative
we can assume a meteoritic density P = 3.5 g/cm3, but demand, in accord-
ance with equation (42), that the variation in log K be caused by meteors with
12 <N < 60 for group A (and 150 < N < 1500 for group C!). We cannot believe
this to be a serious possibility. First, it would be remarkable for all meteors
to fragment. Second, terminal blending is seldom observed in these meteors
with X < 0.1. It is inconceivable that the mass distribution of 25 fragments
could be so uniform that different decelerations among them would go

unnoticed.
An important by-product of this analysis is the suggestion that the

apparent density ratio of the two types of common meteors is 4. In his first

analysis of JVB meteors, Verniani (1965) suggested a density ratio of 1.4
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for meteors separated by his aphelia criteria. We will use the densities
derived above from the average values of log K in a later section. We defend
them against Verniani's values with the ’following plausibility argument:

Any method that maximizes a given variable that distinguishes two groups

of objects suffers from less diffusion between the groups and, therefore, is

to be preferred.

In his second paper Verniani (1966) described meteoroids of ¢’ < 5.4 a.u.
as having densities increasing with decreasing q’ . Before obtaining this
result, he removed a small part of his sample that had large deviations from
the mean of log K. For the most part, small values of K (i.e., group A
meteors) were discarded. Since these meteors have a statistically lower
velocity than group C meteors (Ceplecha, 1968), they also have a lower ¢,
and the effect of diminishing the sample was to decrease the apparent
dependence of density on q’. The question then arises: Is the remaining
dependence real or the result of an admixture of some group A meteors in
the decreased sample Verniani used ? In his final analysis of densities of all
meteors, Verniani has shown that the distribution of densities is bimodal for
meteors of low @' . The high-density group has a modal value comparable
with our group A value. He argues that a constant shift toward higher density
with decreasing q' for the meteors in the low-density mode is partly respon-
sible for the density—aphelion relationship in his reduced sample. This is
certainly correct, since the majority of high-density objects were not present
in that sample. However, we cannot be certain that the observed relationship
is not caused primarily by the increaéed proportion of A meteors still

remaining in the reduced sample as q@' decreases.

Figure 3 may also contain a seed of another important characteristic
difference between A and C meteors. The best representation of the A meteors
is given by log K occ -1/3 log V and is consistent with exponent n= 2 (instead of 3)
in cquation (10). There is no appreciable velocity dependence among the C
meteors, The suggestion is at variance with Verniani's conclusion that neither
of his groups contains a detectable velocity dependence, but as in the case of

the density ratios, this could be an effect introduced by an inappropriate
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division of the data. Furthermore, the relatively small number of group A
meteors in the JVB material would dilute the effect when the meteors are
treated as a homogeneous group. Far better statistics will be required to
demonstrate a convincing velocity dependence, but the consequences will be
sufficiently important to recommend this as a future goal of any optical

meteor program.

3.6 Spallation and the Reverse-Rocket Effect

The complete drag equation (4) initially proposed by Levin (1961)
included, in addition to the normal aerodynamic force, a term resulting from
the impulse of the vaporization products. If the mass loss m in equation (4)

is given by equation (12), then equation (4) can be written as

(46) mV=-THpVE(létwvoe) ,

where ¢ = A/2T ¢ will be referred to as the true value of the ablation
coefficient. The observed value o, if it is derived from a drag equation

containing only the aerodynamic drag, is related to the true value by

(47) o =

As Levin pointed out, this reverse-rocket effect is important only for cases
where the gas cap does not shield the departing vapors. This restriction,
however, is not valid if the ablation particles are solid fragments rather than
vapor. Here we will discuss the apparent changes in the drag forces induced

by such spallation products if they should occur.

Let us define the effective drag coefficient as

(48) I er(Q+fwve)
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If we attempt to adjust the apparent density of the most dense group A
3 -
meteoroid from the value of p,,, = 0.9 }g/cm , the term in parentheses

must take the value (3.5/0. 9)2/3 =~ 2.5, or

(49) fwVe 2 1.5

Substituting - from equation (47), utilizing an empirical value of o

for Super-Schmidt meteors (Cook, 1968),

(50) o 2

and solving for spallation velocity in the extreme case of f = 1, we find that
spallation velocities of the order of 1 km/sec are required to give stony

densities for meteors of group A.

It is of interest to investigate the fraction of the specific ablation energy

2 .
¢ that is contained in the specific kinetic energy of the spall w /2. Certainly,

WZ/Z = ¢ and A =1. Also, as shown by equation (47), c=<g¢ . It follows
then that WZ = 1/T'c . An extreme limitonw =, lO6 cm/sec is found from the
12

smallest observed values of ¢ (2 X 10~ secz/cmz) among the Super-Schmidt
meteors., A limit of w = 3 X lO5 cm/sec results from an average value of

o =2X 1011 secz/cmz. In principle, there is sufficient energy available to
explain the meteor bulk densities in terms of spallation, but the efficiency

of the transfer of the available energy to the spallation process is, in our

view, unbelievably high.

We can confirm this view by an investigation of a simple model. If we
accept the concept of a strong solid body for the meteoroid, we can produce
spall only if the material strength at the surface is exceeded. The maximum
energy available will be that stored in the material by elastic compression
at the failure point. Let us consider the compression of a cylinder of frontal

area A and length L. When compressed by an amount AL, the work done is

given by
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AL
(51) U=f f dL
0

Given Young's modulus Y = PL/AL, where P is the applied pressure and will

later be taken as the compressive strength of the meteoritic stone, we find
that

1 P°AL _ 1 m P>
U=y o m

z “Z oY

©

m

where P is the bulk density. Equating the work per unit mass U/m

with a kinetic energy WZ /2, we have

/2 3

(52) w = P(pm Y)—1 ~ 10~ cm/sec

for meteoritic stone. This is the maximum velocity of spall and is 2 orders
less than required. The correction to the drag coefficient given by equation

(48) is only of the order of 1%.
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4. PHOTOMETRIC AND DYNAMIC MASSES OF FIREBALLS
AND FAINT METEORS

A statistically significant number of very bright meteors (-15 < M < -5)
have been observed by the Prairie Network (P-N) system (McCrosky and
Boeschenstein, 1965). The data-reduction methods and detailed results for
29 of these have been published (McCrosky and Posen, 1968). Photometry
and trajectory data for 150 such objects now exist. The P-N trajectory data
are seldom of the high quality possible with Super-Schmidts. The poorer
optics and the greater range of the object diminish the accuracy. However,
the longer duration of these bright objects (1 <t (sec) < 14) often permits
us to determine decelerations with an internal accuracy comparable to
that obtained for faint-meteor data. We most frequently use the observed
trajectory data over a Z2-sec interval to determine the deceleration at the
midpoint of this trajectory arc. Since intervals overlap, the various
deceleration values are not entirely independent. For example, a 6-sec
meteor would normally be divided to give five solutions from trajectory arcs
of 0 to 2 sec, | to 3 sec, 2 to 4 sec, etc. Those cases where the internal
probable error of the deceleration is less than 12. 5% of that quantity are

discussed in this section.

Photometry of the bright P-N meteors also presents problems not
encountered in faint meteors. In most cases, we have determined photo-
metric masses from only the best photographs and have used these data for
comparison with the dynamic masses determined from all films reduced for a

particular meteor.

All these data are combined in Fig. 4, where we have plotted

mp/m o pfn against my,. For these meteors we have chosen I' = 0. 46,

d
A =1.21, and an arbitrary value of Py = ] in determining m ;. Photo-
metric masses were derived from equation (7) with n = 3 and To = 10_19

(cgs and O mag). The same information is given for the 413 JVB
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and @ = Harvard meteor 7946 (JVB).
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meteors for which the probable error of the deceleration meets the same
condition as that required of the P-N data. For these smaller objects

we have used I' = 1 as a drag coefficient characteristic of free molecular
flow. Each plotted point represents one deceleration solution, and thus

each meteor may contribute many data points. The solid line within the body
of data of the faint meteors represents a single hypothetical meteor with the
average value of X = 0.3. The extensive vertical spread of these points,
covering nearly 10 orders of magnitude, is in part understood by the behavior
of meteors undergoing this degree of progressive fragmentation. The data
points marked by special symbols are from three "asteroidal'' fragments

analyzed by Cook et al. (1963) or by JVB.

The extreme point at the upper edge of the diagram is a Giacobinid
meteor. Meteors of this shower are unusual in every respect, and it is
quite impossible now to determine how much of the anomaly shown in Fig. 4
is the result of fragmentation, intrinsic low density, or real departures from
the usual meteor theory. Until recently, the abnormally great beginning
heights of the Giacobinids were inexplicable. It appeared that radiational
cooling would keep the material well below the vaporization point at these
altitudes. Yet these meteors show the usual emission-line spectrum. of
iron. Cook's (1968) discussion of the radiation properties of particles of
size comparable to the wavelength of the emitted light offers a mechanism
for vaporizing material with a relatively low heat flux to the body. Giacobinids
frequently show visible evidence of gross fragmentation at high altitudes.
If they are also fragmenting appfeciable quantities of micron-sized pieces
at altitudes above 100 km, where the dynamic load is less than 4 X 102 dyn/cmz,
perhaps it is not so difficult to believe that their structure is little more than

a gossamer.

The other extremely high and low values of the mass ratio of both the
Super-Schmidt and the P-N results perhaps should be attributed to systematic
errors of measurement. Other possible explanations are extreme shapes or

an admixture of high-density material. There is no tendency for objects
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of initial mass larger than the critical size for thermal shock (R > 10 cm,
m > 15 kg) to produce low mass ratios. Indeed, the opposite effect may be

detected in the limited data of meteors of very large mass.

A least-squares solution for x has been derived from those fireballs

with at least three observed decelerations, the equation of condition being

p

1
3

&3‘03

m
=X 10g< © . + constant

The values of dynamic mass measured on all photographs of the meteor
were combined in the solution. Eleven cases were rejected because of
unusually large probable errors in X (rms deviation > 0. 25), as were all
cases (25) when only two deceleration measures were available. The latter
category consists primarily of short meteors for which the fragmentation
index may be overly sensitive to small errors in the observations. The
number distribution of X for the remaining fireballs is compared in

Fig. 5 with that given by JVB for small-camera meteors., The two distri-
butions are similar except for a slight shift of the maximum of the fireball
distribution to negative values of X. A progressive decrease in the shape
factor brought about by a streamlining of the ablating meteoroid or a
terminal mass, unaccounted for in the photometric mass, can produce these
negative values of x. In either case, or in the cases discussed below, the
corrections we would require to remove the skewness of the x distribution

will produce a decrease in the bulk densities implied by the observations.

The terminal mass is usually described as that part of the meteoroid
remaining after all ablation ceases. In the case of fireballs in the P-N,
where large ranges and great zenith distances are frequent at the end of the
photographed trajectory, we must first rule out the possibility that the true

terminal mass is not artificially enhanced by our inability to record
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the meteor during the last part of its trajectory. We examined the values

of X for those meteors with terminal velocities less than 8 km/sec in the

hope that this selection would give a fair representation of meteors sufficiently
near a station to permit them to be observed to near the end of their luminous
trajectory. Of the nine meteors in this category, eight have x < 0. This fact
denies the proposed explanation of the observed negative X's and at the same
time revives another possibility. If the luminous efficiency decreases more
rapidly than the first power of velocity at very low velocities, the photometric
mass will be an underestimate of the true mass. The suggestion that the
luminosity law may fail at V = 10 km/sec has been made by a number of
previous investigators ((")pik, 1958; Jacchia, 1949). With so many possible
explanations, each of which may contribute to an error in the photometric
mass, we do not think it fruitful to attempt to derive an expression for the
luminous efficiency as a function of velocity capable of correcting the skewness

of the distribution of X .
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Fig. 5. Distributions of the fragmentation index X for P-N and JVB small-
camera meteors.
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A primary feature of Fig. 4 is the general agreement in apparent
density of many of the P-N objects with the values determined from the

Super-Schmidts by Verniani or by us in Section 3.

The A and C groups cannot be distinguished among the faint meteors in
Fig, 4, since meteors of both groups are strongly diffused along the
ordinate by fragmentation. A separation of the fireballs into two groups
on the basis of beginning heights is unreliable because of varying conditions
of visibility during the observations. Ceplecha (1968) has suggested certain
orbital criteria that would relegate almost all P-N meteors to group A or to

subgroup C1 .

We believe the existing data are sufficient to provide reasonable upper
limits on the density of the group A faint meteors and the average fireball.
We immediately stipulate the possibility that group A objects may be com-
prised of relatively high-density material. The nominal density of 0.6 g/cm3
can be increased by a factor of 2 if, for eéxample, we accept an increase in
the shape factor and luminous efficiency to the values given by Cook et al.
(1963) (A=1.8, 7 )= 1.2 X 10'19). If we arbitrarily change any of the
constants to increase the density of group A meteors by more than a factor
of 3, the densities of the various asteroidal meteoroids become anomalously
high. These are all well-observed meteors with distinctive characteristics,
and the results from these should not be discounted. One might be tempted
to assign these objects to the iron-meteorite class to effect an increase in
density of all Super-Schmidt meteors/. But at the same time, some adjust-
ment in the value of T is required because of the change in composition,
and by a curious coincidence, stones and irons probably cannot be dis-
tinguished from one another by the observed value of K only. If stones
contain 25% iron and if iron is the predominant contributor to luminosity,

then

> T T 47T
(54) K oc_29= { Q 2] ~ [_07}
. pm (3.7) stone iron
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If the densities are in error by a factor of 2 or 3, Whipple's (1967)

pre-Type I carbonaceous chondrite or ""half-baked' asteroid may describe

a material of appropriate density and fragility to satisfy the observations of
group A meteors. We note, however, that the density we derive for group A
resulted from an analysis of a selected subgroup with relatively little frag-
mentation. These particular meteors may be the extreme examples of high

strength and density.

Figure 4 makes it most reasonable to assume that the fireballs are a
mixture of the A and C material observed by the Super-Schmidts. However,
if we take the view that the faint meteors are truly high-density objects and
have their true structure masked by frothing or fragmentation by thermal
shock, then either the large fireballs are a different kind of object of low

density or the constants I', A, and 7, used in determining the fireball

densities are erroneous. If we requ?re a 10-fold increase in the predicted
density of Py = 0. 3, then either (1) the drag coefficient for large bodies is
r (102/3
A= (03

height is less than 10% of its diameter; or (3) the luminous efficiency 7o

) (0.46) = 2.1; (2) the shape factor for the average large body is

)(1.21) = 5.6, corresponding, for example, to a cylinder whose
has been underestimated by a factor of 100.

We would, at the very least, be presumptuous if we attempted to
redetermine the drag coefficient on the basis of an assumed meteor density.
With respect to (2), highly flattened shapes without initial rotation will
probably align themselves in flight with the flat face forward. But we have
no reason to expect such extreme configurations. Isotropic etching by dust
particles in space will tend to flatten any initially nonspherical body, but
the initial shape must also be considerably flattened to produce the required

shape with any tolerable etching rate.

The question of the existence of high-density meteoroids then rests
primarily on the value of the luminous efficiency. Two problems are involved:
Are the experimental values correct for the luminous efficiency of iron?

Is the extrapolation of these values to meteoroid material appropriate?
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The agreement of all the data cited previously makes it most difficult
to disbelieve the general result obtained from the luminous efficiency of iron.
Many additional artificial meteors in the atmosphere (Ayers et al.,
1970) have confirmed the earlier Trailblazer results. Since the photo-
metric measures can hardly be wrong by a factor of 100, any major
discrepancies must be attributed to an erroneous value of the mass that
entered into the meteor process. While it is true that the mass of a pellet
is known only by ground studies of similar accelerating devices, the duration
of the artificial meteor gives a rough measure of the mass of the flight model.
If the true mass of the Trailblazer pellet is 10% (1% is required to explain
away the low-density meteors!) of the nominal mass of 2.2 g, or if only 10%
of the initial mass is vaporized, the velocity history of the observed pellet

cannot be explained.

Allen and Baldwin made two attempts to derive a luminous efficiency for
meteors that would justify their contention that small-camera meteors, for
which the frothing process is less efficient, are also of high density. A partial
explanation, in their 1967 paper, depends on blackbody radiation from carbon
particles. The contribution of this luminosity is dependent on the abundance
of carbon, the radiation temperature, and the sensitivity of the detection
system to this radiation. Their upper limit of the suggested change in
luminous efficiency is overestimated by at least a factor of 2 since they
assumed a sensitivity of the optical systems to include the range 3000 A
to 7000 A. The actual systems employed in obtaining the data they analyzed
covered only the range 3800 A to 5000 &.

In the second paper, Baldwin and Allen (1968) again derived the luminous
efficiency as a function of velocity on the assumption of high density and
frothing meteoroids. To substantiate their results, a comparison was made
with the laboratory results of Friichtenicht et al. (1968). We object to this
comparison on two points. First, some of the increase of luminous efficiency
with decreasing velocity that they attribute to Friichtenicht et al. is present

only if one obviously spurious data point in the laboratory results is accepted.
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Their plot of luminous efficiency as a function of velocity suggests

-1.7 . -
™o SR , whereas the experimenters themselves have used o oV

to express their results. Second, we believe the experimental data support

1

rather than refute the constancy of o for meteors. Since elements other
than iron become more 1mportant radiators as the velocity increases, the
luminous efficiency for meteoritic material as a whole must increase with

velocity more rapidly than that for iron.

While it may be possible to adjust the frothing model to accommodate
these factors as they relate to fainter meteors, we cannot, for the reasons
stated previously, conceive of frothing playing any appreciable role in the
case of the fireballs, If they are of high density, the luminous efficiency must
be increased 100-fold for large bodies. Furthermore, the increase of
luminous efficiency with increasing mass would have to occur so as just to

compensate for the decrease in the importance of frothing.

We cannot state, with finality, that such remarkable changes do not
occur, but we can give qualitative evidence that suggests their extreme
unlikelihood. Ceplecha (unpublished) has recently obtained a spectrum
(56 A/mm and 28 A/mm) of a meteor estimated to be -18 mag, the brightest
spectrum on record and equal to the brightest P-N object. The velocity was
18 kim/sec at the beginning of the trajectory and about 6 km/sec in the final
portion. Only minor differences exist between this spectrum and more usual
objects of this velocity (faint Si II lines are detectable, for example). Iron is
still the predominant radiator in the fireball, and this element alone must

absorb nearly the entire increase necessary in T If we accept the value

0
of Friichtenicht et al. for the absolute efficiency of iron in the range 3400 A to

6300 A,

luminous energy _
kinetic energy 0. 5%

3
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then nearly 50% efficiency in the visual range will be required. Until some

mechanism for this efficient radiation is described, we prefer to accept

the concept of low-density meteoroids.
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5. METEORITES AND TERMINAL MASSES OF FIREBALLS

No meteorites have been recovered by the P-N system during 5 years of
operation (see McCrosky and Ceplecha, 1969, for a discussion of the expec-
tations and results of this operation). Extensive searches have been made
for two objects that, if of high density, would have produced metecorites of less
than 2 kg. The significance of this result is not that no recoveries have been
made b‘ut rather that there have been so few objects that warranted a search.
If the predicted rate of fall (one meteorite per year of greater than 1 kg) is
correct, then the probability of 0 or 2 occurring in 5 years is 0. 007 or 0. 08,
respectively. This unlikely dearth of meteorites prompts us to question (1)
the observations or theories that produce these results, and (2) the assump-

tions that led to the predicted rate.

The determination of an upper limit to the terminal mass is one of the
least sophisticated aspects of the reductions of our observations. Questions
of the true luminous efficiency or of the ablation process are not involved in
the problem. The distance D along the trajectory as a function of time is
determined by the usual meteor-reduction procedures. We find that these
data for most meteors with small terminal velocities (4 < V < 8) and low
heights (20 < H < 35) can be adequately expressed by

(55) D=a+ bt -2t

This expression, implying a constant deceleration ¢, is valid for the final
0.5 to 1.0 sec of the trajectory. The constants are determined from a least-

squares fit. The internal probable errors are usually

(56) Ab=0.0lb , Ac<O0.lc
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With V and V given by the differentiation of equation (55) and with the standard
atmospheric density, we can compute the dynamic mass at the end of the vis-
ible trajectory with equation (1). This will be an upper limit to the terminal
mass since some additional ablation may occur. These masses rarely exceed
100 g for P-N meteors if we assume meteoritic densities and spherical shapes;
There are, in fact, too few cases of m, > 100 g for a significant statistical
analysis, but we estimate that an error of at least a factor of 10, and prob-
ably 25, in the masses given by equation (1) is required to explain the appar-
ent low rate of meteorites. Large systematic errors inI', p, and V are
improbable. We have, perhaps, underestimated the shape factor. A cursory
inspection of meteorite samples in museums suggests that an increase in A

by a factor greater than 41/3

(corresponding to a hemisphere in the maximum
drag orientation) is unlikely. The final orientation of some meteorites can
be distinguished by the fusion crust. A study of the shape factors of these

objects could help define the average value of A and its dispersion.

Systematic errors in V can arise from errors either in D or t. The time
scale is controlled by the frequency of a commercial power source. The
errors in V due to a constant but abnormal power-line frequency are exactly
compensated by errors in VZ; i.e., the dynamic mass is independent of the
time scale. Variations in the line frequency over the 1 sec of the trajectory

under consideration are small, and in any case, not of a systematic nature.

In determining D, we assume that the center of light of the trail also
represents the center of mass of the meteoroid. If for any reason there is
a progressive increase in the distance between the body and the light source
with time, we would underestimate V, and to a lesser extent, V2'. Let us
assume as an example that the light phenomenon obeys equation (55) while

the body follows the relationship

14
(57) D’'=a’+ b’t—%t
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We take a’ = a= 0 and b’ = b + ¢ without loss of generality. If we require a
factor of 2 error in V from this effect, then ¢’ = ¢/2 and

(58) AD:D’-D=et+§t2>§t2

Measured values of c are of the order of 2 X 105 cm/secz. For t= 0.5 sec,
AD > 125 m, and for t =1 sec, AD > 500 m. The occulting shutter on the
P-N camera operates at 20 cps. If the terminal velocity is 4 km/sec, the
meteoroid, or the center of light, will travel 200 m during one shutter cycle,
a distance comparable to AD. If the luminosity is thought of as a long wake
behind the body with a maximum at AD, this model would predict a consider-
able smearing of the meteor image that would be evident as luminosity in the
shutter breaks. Terminal portions of the trajectory often show no signs of
this luminosity, and when wake luminosity is apparent it is frequently due to
an obvious fragmentation process that has produced a small number of dis-

cernible pieces.

In summary, we do not believe it possible to modify significantly any of
the quantities used to determine a terminal mass. We conclude from the
fireball observations that meteorites in the range I to 10 kg do not reach the

earth with the frequency expected and that we erred in our predictions.

It is well known that recoveries of individual small stones (m < 5 kg)
are substantially less than would be predicted by a simple linear extrapola-
tion of the distribution of bodies m > 50 kg. Brown's (1960) discussion of
stone meteorite falls, which we used in our prediction process, suggests that
meteorites of mass 1 kg are underabundant by a factor of 10 compared with
the number expected from the extrapolation. Brown suggests that atmos-
pheric attrition, in addition to the obvious selection effect, might be respon-
sible for this decrease of numbers of small meteors. We would now agree
with this conclusion and suggest that thermal fracture may be the important

mechanism for the attrition of meteorites of initial mass 1 < m, (kg) < 15.
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Objects in the range 10 <mg, (kg) < 100 may survive with significant
terminal mass. If they are structurally strong, their mass-loss ratio will
be determined by the heat-transfer coefficient, which in turn may depend on
the body size. If convective heating is important, large bodies will better
survive; small bodies have the advantage if radiation transfer from the gas
cap predominates. However, the objects at the low end of this range may
ablate to sizes where thermal shock is again effective. Thus, there might
be a tendency to increase the relative number of the larger meteorites

derived from this class of objects.

Pressure fracturing in meteorites can be the primary attrition mecha-
nism for those still larger bodies possessing sufficient momentum to pene-
trate deep into the atmosphere. No stones of mass greater than about
1000 kg have survived. Larger meteorites fragment and produce showers
of relatively small stones. In the special case of a body entering an exponen-
tial atmosphere without mass loss, the maximum deceleration is reached
when

(59) V*: Vooe—l/Z )

and, by application of equation (1), when the atmospheric density is

% m b cos ZR Voo
(60) P =F —p In —%

v
The maximum stagnation pressure is then

% b cos Z

(61)  (Tp Vv =% R 2

2A 7 e ‘w

This maximum loa:i is sometimes equated to the crushing strength Sc of the
material. Thus, Opik (1958, p. 26) has determined a strength of

SC = 2 X 108 dyn/cm2 for meteoritic stone, based on the heights of breakup
of observed falls. This value is an order of magnitude below the uniaxial
compressive strength of many terrestrial rocks and some meteoritic sam-

ples (Buddhue, 1942). C”)pik resolves the discrepancy by suggesting that
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the fragmentation is a result of sheer failure in asymmetrical meteoroids.
It seems no less probable that large meteoroids can contain planes of weak-
ness and that the whole meteorite fails under compression at 6pik‘s destruc-

tion limit.

It should be noted, however, that the uniaxial crushing strength as
determined in the laboratory is not a precise measure of the strength of the
meteorite in flight. In the former case, pressure is applied on the ends of
a cylinder until failure. However, if a lateral confining pressure israpplied
simultaneously to the sides of fhe cylinder, the compressive strength of the
sample is increased, sometimes markedly. The meteorite in flight may be
subjected to a stress field that is intermediate to those of the two laboratory
conditions. For example, a spherical object will be subjected to a body force
due to the drag but will also have an aerodynamic pressure normal to the
surface and primarily over the leading hemisphere. We cannot yet estimate
how much this particular confining pressure would increase the strength,
if at all, but we suspect that (Spik's value, if it is a reasonable estimate of
the effective crushing strength, is an upper limit to the classical uniaxial
compressive strength. In Table I we give for the various parameters of
equation (61) the maximum mass and the approximate height of maximum
pressure for nonablating bodies (¢ = 0) that can enter the atmosphere without
structural failure.

We have used I'p V2 =2 X 108 dy‘n/crn2 and an inverse atmospheric
scale height of b= 1.6 X 10—6/'cm. The latter value is an upper limit for
the atmosphere where the major deceleration takes place and thus gives a
lower limit to the masses quoted. For strong meteorite structures
(SC = 3X 109 dyn/cmz) there is no limit in the mass that can reach sea
level before crushing for any of the velocities considered.

Trajectories with low values of cos Z_ are statistically less likely as

R
the velocity increases (Wood, 1961), and the observed limit of stony
meteorite masses can be understood only if meteorites are relatively high-

velocity objects for the most part. Wood reached the same conclusion with
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Table I

Initial masses (my) and masses (m) of meteorites of various velocities that
attain a maximum load of 2 X 108 dyn/cm? at altitude H. Ablation is assumed
to follow a law expressed by equation (12). Tabulated pressures are for '

vertical entry (cos ZR = 1)
Mass at )
Ablation maximum Helght at Mass at
. « . maximum
Velocity coefficient pressure pressure entry
Voo 20‘ , m (cos ZR) I moo(cos ZR)
(km/sec) (sec”/cm™) (g) (km) (g)
0 2.8 ><104 4.4 2.8><104
11 10'12 2.39 X 104 4,7 3.5 X 104
5% 10712 1.75 x 10% 5.8 9.0x 10
0 2.9 x 10° 9.1 2.9% 10
16 10—12 2. 06 X 103 9.8 4.4 X 103
5% 10712 6.95 % 102 12. 2 9.5%x 10°
0 4.3 XIOZ 13.2 43><102
22 10712 2.48 X 10° 14. 3 9.6 x 10°
5% 10712 8.6 X 10 16. 7 7.3% 10°
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totally different arguments based on the distribution of the local time of fall

of meteorites.

There remain two other possible explanations for the absence of large
meteoritic stones (we exclude the possibility that they do not exist in nature).
First, the strengths are substantially less than the value we have assumed.
Second, ablation may reduce the initial mass and, at the same time, increase
the dynamic pressure available for crushing. The latter effect can be easily
understood qualitatively if we note that a body that has ablated down to the
critical mass will have a greater velocity at any given height than will a
nonablating body of the same mass. The problem can be treated quantitatively
for the special case of a constant ablation coefiicient ¢ and a constant inversec
scale height b. Equations (1) and (2) can be integrated to give the atmospheric

density p, as a function of velocity Vl according to

- u
b cos ZR p2/3 e 0 0 U
(62) Tp, = m J. =— du ,
u
|

1 2A

where u = O'V‘2 /6. The pressure is given by

-u u
3 bcos Z p2/3u e Orn]'/3 0 u
(63) P. =T V2= R m 1.,; — O, S e du
1 P1 V1 2A0 q
Y
Also, -
o
Y
when
Yo
u, U
(64) e =j ~ du = Ei(uO) - Ei(ul)
!
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Using equation (12) and setting the maximum pressure Py = 2 X 108 dyn/cmz,

we obtain

1/3 _ 108 oA
1 2/3
3bcos ZR Py %1

(65) m

In Table I we show the limiting mass for survival for two values of the

ablation coefficient; o = 10”12 secz/crn2 is a lower limit for all photographic

12 2 2.
sec /cm' is a value between an average meteor

meteors, and ¢ = 5 X10°
and the largest observed values (Jacchia, 1958). The preatmospheric
masses m__are computed from equation (12). A comparison of all results
in Table I shows that ablation is not particularly effective in reducing the
limiting size of the low-velocity objects and, therefore, is not an adequate

explanation of the observed mass limit of stones.

It then follows from the preceding arguments that either (1) the effective
crushing strength is SC < 107 dyn/cmz, or (2) meteorites do not arrive at
the earth with V < 16 km/sec. Both possibilities contain interesting ramifi-
cations. Given a low crushing strength, we can suppose that the tensile
strength is also low and we should reevaluate the limit for thermal shock
derived in Section 3. If we presume that the decreased crushing strength
is primarily due to planes of weakness in the material, rather than to a bulk
property of the whole meteorite, then the exact mechanism of thermal frac-
ture becomes crucial. The planes of weakness will act as stress relievers
if our explanation for the existence of meteoritic stone less than the critical
size for thermal fracture is correct, and the tensile strength for thermal
stresses will be little affected. But should the preexisting cracks act as
stress concentrators, the tensile strength would decrease greatly. We are
disinclined to proceed further with this uncertain discussion and will only
note that a decrease in the tensile strength of a factor of 5 will increase the
limiting radius to 50 cm (equation (30)) orm = 2 X 103 kg. Meteorites
reach peak heating loads before peak dynamic loads, and thermal fracture
in these large, weak structures can occur before compressive failure. To

argue against a universal very low strength, we recall Buddhue's (1942)
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significant inverse relationship between the strength of meteorites and the
number of stones associated with the fall. The strongest objects were almost
always single falls. This fact precludes the possibility that the strength of
the whole preatmospheric meteorite can be substantially less than that of

the tested sample.

Liet us now accept a lower limit of V = 16 km/sec in the explanation for
the absence of large stones. We can establish a rough upper limit on the
heat-transfer coefficient A for meteorites by taking the ablation fraction for
the Saint-Severin meteorite proposed by Cantelaube, Pellas, Nordemann,
and Tobailem (1969) on the basis of cosmic-ray tracks near the outer surface.

Equation (12) gives

4T ¢ tn (mo/me)

(66) A = s
V‘2 - V2
0 e

where the subscript e refers to some final condition when ablation noticeably
stops. We choose Ve = 8 kimm/sec as a very safe upper limit on the velocity
(we have observed ablation at V < 5 kimm/sec in fireballs), and

£ =8X 1010 ergs/g, the energy of vaporization. Cantelaube et al. give
mO/me = 1.33, and we find A < 0. 02. If this low value of the heat-transfer
coefficient is correct for meteorites, the near-negligible terminal mass of
the fireballs we have observed offers an independent argument against their
also possessing the physical characteristics of meteorites. A more realistic
study of the ablation problem of a Saint-Severin-type body in which convec-
tive and radiative heat transfers are included would be an extremely useful
addition to meteoritics. In particular, we would like to know the upper

velocity limit consistent with the ablation defined by the cosmic-ray tracks.

In view of the complex nature of the attrition processes outlined above,

we do not believe that any statement concerning the distribution of initial

mass can be made by use of the observed distribution of meteorite masses.

There is certainly no reason to believe that the final distribution should be

a straight line in a log-mass — log-number plot.
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Furthermore, if the initial mass distribution were known, our knowledge
of the important details of the fragmentation process is too limited to predict
any reliable distribution of meteorite’s on the ground. The mechanism of
fracture or stress relief in thermal shock is ambiguous. The treatment of
the ablation process and the heat-transfer problems has (in this paper and,
generally, in the past) been sketchy at best. New methods developed for
reentry problems could now be applied. In the case of pressure fragmenta-
tion, the concept of the usual uniaxial compressive strength is only a first-

order approximation to the problem of an entering meteorite.

Finally, we note that the forces on a large meteoroid during entry are
not trivial. For some material they are comparable to or greater than
any forces the body has previously endured. The pressure load on large
meteoroids is properly considered as a disruptive force. However, because
of the hydrostatic normal force applied to the body behind the shock wave,
there is also a compressive component that, for initially weak and low-
density material, may cause sufficient compaction of some interior material
to increase its strength. Can such indurate material arrive intact at the
surface of the earth? Is the structure of a Type I carbonaceous chondrite
consistent with its formation from a low-density (cometary?) body that has

been compressed during atmospheric entry?
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lim

LIST OF SYMBOLS

frontal area of the meteoroid.

shape factor.

inverse density scale height in the atmosphere.

heat capacity.

distance along the meteor trajectory.

parameter describing the direction of departing ablation products.
functions defined by equations (25) and (26).

luminous intensity within a specified spectral region.

Note: When only undispersed photographic information is avail-
able, intensities are conventionally expressed in terms of the
brightness of an A0 star producing the equivalent photographic
effect. These intensities, given relative to a O-magnitude star,
are defined as I = -2.5 log M.

= ,-1/3 /3 -2/3,

PATO m

instantaneous mass of the meteoroid.

initial mass.

dynamic mass, determined from the measured drag.
photometric mass, determined from the measured luminosity.
terminal mass.

mass lost by vaporization.

radius vector of a spherical meteoroid.

radius of a spherical meteoroid.

radius of a meteoroid for which the compressive stress at the
surface and the tensile stress at the center are both equal to the

corresponding strength of the meteoroid material.
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tensile, compressive strength of the meteoroid.
absolute temperature inside and outside the atmosphere.
instantaneous meteoroid velocity.

initial meteoroid velocity.

meteoroid velocity with which the critical temperature T, is
reached.

speed of ablation products with respect to the meteoroid.
W™ is a characteristic depth of heating (equation (21)).
Young's modulus.

angle between the meteor trajectory and the local vertical.
thermal expansion coefficient.

= e o'

m
drag coefficient.
Note: We use I' = 1 (free molecular flow, faint meteors) and

I" = 0.46 (continuum flow, fireballs).

thermal emissivity.

heat-transfer coefficient.

heat conductivity.

Poisson's ratio.

thermal stress in the meteoroid in a direction perpendicular to r.
atmospheric density.

meteoroid density.

thermal stress in the meteoroid along the radius.

air density at which the critical temperature T is reached.

= A/2Tp, ablation coefficient.

Stefan-Boltzmann constant.

temperature relative to TO.
critical surface temperature at which the meteoroid material

strength is reached.
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luminosity coefficient,
fragmentation index (equation (53)).

heat of ablation,
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